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The computational cost of a Monte Carlo algorithm can only be meaningfully discussed when taking into
account the magnitude of the resulting statistical error. Aiming for a fixed error per particle, we study the
scaling behavior of the diffusion Monte Carlo method for large quantum systems. We identify the correlation
within the population of walkers as the dominant scaling factor for large systems. While this factor is negligible
for small and medium sized systems that are typically studied, it ultimately shows exponential scaling. The
scaling factor can be estimated straightforwardly for each specific system and we find that is typically only
becomes relevant for systems containing more than several hundred atoms.
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I. INTRODUCTION

Today’s scientists can choose from a wide range of com-
putational methods for the simulation of quantum mechani-
cal systems. These range from highly efficient semiempirial
methods to density functional methods—offering a practical
compromise of efficiency and accuracy—all the way to very
accurate quantum chemical methods. Besides these deter-
ministic methods, various stochastic quantum Monte Carlo
�QMC� methods are gaining ground, offering exact handling
of many strongly correlated systems and scaling up to system
sizes that are out of reach for the deterministic competitors.

The two major arguments that are typically brought up in
the advocacy of QMC are the excellent parallelizability and
the good scaling behavior. Depending on the QMC variant
that is chosen, the collection of statistical data points can be
performed in parallel with little to no communication, mak-
ing the method well suited for high performance computers
of all architectures. The scaling behavior depends greatly on
the details of the system and the method, but it is generally
found to be significantly better than that of quantum chemi-
cal methods and linear scaling algorithms have been
reported.1–8

A commonly used method for the ab initio simulation of
electronic structure is diffusion Monte Carlo �DMC�,9–11

typically using the fixed node approximation.12 For this
method, the bulk of the computational effort is spent on the
repeated evaluation of a trial wave function for electron po-
sitions that change step by step, one electron at a time. The
trial wave function is usually expressed as a Slater
determinant13 of single electron orbitals, multiplied by a Ja-
strow factor14 to express electron correlations. For single
electron orbitals expressed as maximally localized Wannier
functions,15 the local energy can be re-evaluated in constant
time after a single electron move, leading to an O�N� algo-
rithm for a complete time step of one configuration.1–8 As a
further refinement to this, trial wave functions for DMC cal-
culations are today commonly expressed in a blip basis,16

which can be evaluated very efficiently.
In contrast to deterministic methods, however, the com-

putational cost of a Monte Carlo �MC� simulation is mean-
ingless without specifying the statistical error that is
achieved. Deterministic methods typically have systematic

errors that are either intrinsic or depend on parameters that
do not scale with the system size. The statistical error of MC
simulations on the other hand scales very simply with the
inverse square root of the run time while the scaling with the
system size is a nontrivial issue that depends on details of the
method and the system of study. Though the unfavorable
scaling of the statistical efficiency of DMC has been demon-
strated before,17 it has—to our knowledge—never been stud-
ied systematically.

In this paper, we will present a systematic study of the
scaling behavior of QMC calculations aiming for a fixed
statistical error bar. The main focus will be on the DMC
algorithm including branching and population control as de-
scribed by Umrigar et al.,18 other variants will be briefly
discussed as well. The statements that we will derive are
expected to hold for DMC calculations in general, but to
simplify understanding; we will consider a “typical” system
made up of N similar constituents which we simply call “at-
oms.” This could be, for example, a crystal in a simulation
cell made up of N primitive cells, a cluster of N atoms or a
large organic molecule of N comparable groups.

We will begin by deriving several general quantities and
continue by demonstrating these in the case of a simple
model of N independent hydrogen atoms. From this model
we can numerically extract the missing pieces of the scaling
behavior, allowing a quantitative estimate of the scaling limit
for arbitrary systems. This limit will then be discussed for a
number of different sample systems.

II. SCALING OF COMPUTATIONAL COST

The total computational cost of a DMC calculation �op-
tionally split over a number of parallel CPUs� is

ttotal = Nstep � Npop � tstep, �1�

where Nstep is the number of steps in imaginary time, Npop is
the average population size and tstep is the CPU time needed
for one single all-electron step per configuration. Using a
so-called “linear scaling” QMC algorithm,1 each all-electron
move scales as
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tstep � N ,

assuming that the evaluation of the Slater determinant domi-
nates the computational cost. For the moment, we assume
that population fluctuations are negligible and Npop can be
treated as an external parameter. The influence of the popu-
lation control will be discussed later on.

The standard error of the total energy can be expressed as

�Etotal =�� �corr

�step

1

Nstep
�� �pop

Npop
��dmc

2 , �2�

with the constituents explained in the following.
The raw DMC variance �dmc

2 is the variance of the local
energy of individual configurations over the whole simula-
tion. Being based on the mixed estimator, �dmc

2 may deviate
from the variance �vmc of the trial wave function obtained in
a VMC run. For typical systems, however, we find that
�dmc

2 ��vmc
2 . Assuming that the trial wave function of the

whole system can be optimized to about the same quality as
that of a single constituent N, this variance scales as

�dmc
2 � N , �3�

since the local energy is dominated by the sum of N inde-
pendent atomic local energies.

The �integrated� correlation time of a series of data points
xi is given by19

�corr = �step�1 + 2�
j=1

� �xixi+j	i − �xi	i
2

�xi
2	i − �xi	i

2 � , �4�

where � · 	i denotes the arithmetic mean over the index i. �corr
in units of the time step �step describes the factor by which
the number of steps Nsteps has to be divided to correct the
error bar of the result for serial correlation. To obtain
�corr /�step, as an alternative to computing Eq. �4� directly, one
can also use the reblocking method.20 Though the system
may have various correlation time scales, some of which
depend on the system size, we find that the integrated corre-
lation time that is responsible for the reduction in the result-
ing accuracy is dominated by the shortest correlation times
which depend on local properties, such as the kind of nuclei
in the system, but not on the size N.

The population correlation factor �pop	1 captures the in-
efficiency of the process due to population correlation and
fluctuation. We will treat this factor as an unknown quantity
for the moment and discuss it in detail afterwards.

Using Eqs. �1� and �2� along with the discussed scaling
laws, we can express the scaling of the total computational
cost as

ttotal �
�pop

�Eatom
2 , �5�

so we see that—apart from the factor �pop—DMC is in fact a
constant scaling method if a fixed standard error per atom
�Eatom=�Etotal /N is required, as it is the case for example in
the study of long-ranged correlations in periodic systems. Of
course, memory limitations or implementation issues will
limit the size of computable systems. Within these limita-
tions, however, the constant scaling behavior is not so sur-

prising, considering that for collecting statistical data, it does
not make any difference whether you simulate N weakly
interacting systems in parallel or a single system N times as
long. Both result in the same statistical error for the same
computational cost.

III. POPULATION CORRELATION

For small enough systems, the factor �pop is close to one,
which may be the reason why, to our knowledge, a system-
atical study has never been attempted before. When scaling
up the system size, however, population correlation becomes
important and we need a better understanding of its scaling.

The DMC algorithm is based on a drift-diffusion process
with branching and killing of configurations due to fluctua-
tions in the local energy. A freshly branched pair of configu-
rations is identical and thereby fully correlated. In the fol-
lowing drift-diffusion process, it takes some time to
decorrelate, leading to a fluctuating amount of correlation
within the population at any time.

We consider a DMC run over Nstep time steps i. We will
first consider a simplified model with constant population of
Npop configurations p, each having a local energy Ep

i . A gen-
eralization including population fluctuations will follow in
the section below.

An effective population size Npop
eff can be defined as the

number of configurations that would result in the same vari-
ance of the average as the correlated population. For a long
DMC run, the raw DMC variance can be estimated from the
averages over all configurations at all time steps as

�dmc
2 = ���Ep

i �2	p	i − ��Ep
i 	p	i

2, �6�

while the variance of the population average is defined as

�pop
2 = ��Ep

i 	p
2	i − ��Ep

i 	p	i
2, �7�

with the averages abbreviated as � · 	p=�p=1
Npop· /Npop and � · 	i

=�i=1
Nstep· /Nstep.
In the case of an uncorrelated population, we would find

�pop
2 =�dmc

2 /Npop, so we can measure the amount of correla-
tion by defining an effective population size as the ratio

Npop
eff = �dmc

2 /�pop
2 , �8�

where Npop
eff 
Npop with equality only in the case of a com-

pletely uncorrelated population. By collecting the necessary
data during a DMC run, Npop

eff can be computed at negligible
cost. Figure 1 displays the scaling of the effective population
size with increasing system size for a sample system.

Note that the average population Npop is typically slightly
lower than the target population Npop

target, because the popula-
tion control implemented in CASINO uses the linear average
�Ep

i 	p of the energy instead of the exponential average
ln�exp�Ep

i �	p which determines the actual growth of the
population. Apart from reducing the population size, this has
no effect on the statistics or the result.

IV. POPULATION FLUCTUATIONS

Keeping the population size completely fixed as we had
assumed in the previous model gives rise to a population
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control bias. To reduce this bias, the population size Npop
i is

allowed to fluctuate and only weakly controlled. The average
over all time steps then needs to be weighted. In the simple
population control mechanism considered here,18 the weights
are simply defined by the population size wi=Npop

i for each
time step i. The resulting total energy average of a DMC run
is then

Etot =
1

�
i
wi

�
i=1

Nstep

wi�Ep
i 	p.

In more sophisticated schemes, wi and Npop
i may be decou-

pled. To estimate the variance of this weighted average, we
can split off the correlation time into a factor and use the
estimator of the variance of a weighted average. Viewing the
local energies Ep

i as random variables and the weights wi as
constants given by a long DMC run, we can express this as

var
Etot� =
�corr

�step

1

��
i
wi�2 �

i=1

Nstep

wi
2 var
�Ep

i 	p� . �9�

In the same interpretation of Ep
i as random variables, we can

replace the averages over time steps in Eqs. �6� and �7� by
statistical expectation values � · 	 and write for each single
time step

var
�Ep
i 	p� = �dmc

2 − ���Ep
i �2	p − �Ep

i 	p
2	 .

Substituting this into Eq. �9� results in a sum over expecta-
tion values, so the var
Etot� itself can be written as the ex-
pectation value of a single expression which can be ex-
pressed as a product

var
Etot� = � �corr

�step
�

1

Nstep
eff �

1

Npop
eff � �dmc

2  ,

with generalized expressions for the effective step number
and population size,

1

Nstep
eff =

�
i
�wi

2�

��
i
wi�2 ,

1

Npop
eff = 1 −

1

�dmc
2

�
i
wi

2���Ep
i �2	pop − �Ep

i 	pop
2 �

�
i
wi

2 ,

where the quadratic appearance of the weights makes the
effective population size sensitive to population fluctuations
as well.

To estimate the statistical efficiency of the DMC algo-
rithm, it is most useful to combine both quantities into the
definition

�pop =
Nstep � Npop

Nstep
eff � Npop

eff . �10�

For a DMC run that is sufficiently long that the set of
weights wi is a good representation of the statistical distribu-
tion, the quantity �pop is an unbiased estimator. It corre-
sponds exactly to the quantity in Eq. �2� and remains directly
proportional to the total CPU cost according to Eq. �5�.

V. ASYMPTOTICS OF �pop

The asymptotic behavior of �pop for weak population cor-
relation can be derived by a few simple arguments. Assume,
for a moment, the local energy Eloc of configurations to be
normally distributed as

p�Eloc� =
1

�dmc
�2�

exp�−
Eloc

2

2�dmc
2 � .

A single configuration with Eloc�0 will branch at a rate of
−Eloc. Integrated over the distribution of Eloc, this leads to a
branching rate per configuration of

�branch
−1 = �

−�

0

dElocp�Eloc��− Eloc� =
�dmc

�2�
.

It is, of course, known that the true distribution of the local
energy is far from normal.21 However, we can significantly
relax the previous assumption, considering that we essen-
tially obtained the ratio between standard deviation and
mean absolute deviation which holds approximately for a
wide range of distributions.22

Starting from an initially uncorrelated population of size
Npop, the population after branching is Npop+1 with two iden-
tical configurations. The population mean is equivalent to
that over Npop−1 correlations of single weight and one of
double weight which has the variance

��pop
2 �� = �dmc

2 �Npop − 1� � 12 + 1 � 22


�Npop − 1� � 1 + 1 � 2�2 .

For Npop1, the effective population size after the branching
is therefore �Npop

eff ��=Npop−1.
To keep the population stable, the branching and killing

rates have to be equal. For a weakly correlated population, it

FIG. 1. �Color online� Scaling of the effective population size
Npop

eff 
see Eq. �8�� in a sample system 
�=1.5, see Eq. �13�� with
increasing number of atoms Natom. The target population size is
fixed, the true population size Npop fluctuates around a slightly
lower average �see text�. The “error bars” of Npop visualize the
increasing population fluctuations �Npop

. The effective population
drops exponentially, due to increasing correlations within the
population.
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is trivial to see that a killing event reduces the �effective�
population by 1 as well.

After branching, the two copies evolving independently
take an effective time of �corr /2 to decorrelate. �Since �corr
measures the amount of statistical data that is lost due to
serial correlation, which is exactly the quantity that we want
to measure for population correlation as well.�

For �branch�corr, the effective population is reduced by 1
at a rate of 2Npop�branch

−1 and restored to Npop within �corr /2.
On average this gives

Npop
eff = Npop − 2Npop�branch

−1 �corr/2,

or, since population fluctuations can be neglected,

��pop��corr�dmc→0 → 1 +
�corr�dmc

�2�
. �11�

VI. MODEL DMC PROCESS

To study the dependence of �pop on the system parameters
beyond the perturbative regime, we have implemented the
full DMC algorithm on top of a minimal model of a corre-
lated diffusion process. Each configuration is reduced to a
single random variable with a simple exponential autocorre-
lation so that �dmc and �corr are free parameters. The value of
the variable is used directly as the local energy for the
branching process.

The population control mechanism described by Umrigar
et al. introduces an additional parameter �ceref with the di-
mension of time �implemented in CASINO as parameter
cerefdmc, used in updating the reference energy Eref;
�ceref /�step corresponds to g in the original publication Ref.
18�. To avoid frequent population instabilities for extreme
parameter settings, we have restricted the population size to a
window around the target population and decoupled the total
weight from the total population size outside of this window,
allowing recovery from explosions or starvation without in-
troducing any additional bias. All the results presented below
are in the regime where this mechanism has no significant
impact on the efficiency.

With each run, one obtains the factor �pop as a function of
the parameters �dmc, �corr, �ceref, and �step. The result must be
dimensionless, reducing the number of relevant parameters
by one. Furthermore, one is interested in the limit �step→0.
We find that for �step�0.1�min��corr ,�ceref ,1 /�dmc�, the in-
efficiency factor �pop becomes practically independent of
�step in all cases. We can combine the remaining free param-
eters into �dmc�corr and �ceref /�corr, leading to the results dis-
played in Fig. 2.

Most significantly, we find that Eq. �11� is not only con-
firmed in the perturbative limit, but its exponential continu-
ation gives a strict lower limit for the inefficiency factor

�pop 	 exp��dmc�corr/�2�� �12�

where the deviation from this exponential depends on the
ratio �ceref /�corr.

VII. HYDROGEN SAMPLE SYSTEM

To demonstrate our result in a real calculation, we have
performed various DMC runs using the CASINO program.25

We chose a system of N hydrogen atoms placed several thou-
sand atomic units apart to make them effectively indepen-
dent. As a trial wave function, we used the exact ground state
with a detuning parameter � and an additional term to satisfy
the Kato cusp condition,26 centered on each hydrogen atom

���r� = �e−�r + �1 − ��e−��+1�r. �13�

We performed a large variety of runs on this model system
with system sizes N� �1,2 ,4 ,8 , . . . ,64�, and detuning pa-
rameters �� �1.1, . . . ,3.0� and target population Npop=200.
The DMC time step was set to �step=0.02 in all cases.

The variance �dmc
2 was found to be equal to �vmc

2 within
the statistical error in all cases. In each case, the population
correlation factor �pop was determined from the variances
using Eq. �10�.

Obtaining a precise value for the correlation time �corr
takes an extremely large amount of data in either of the two
methods described above. For a reasonably precise value, we
performed a very long DMC run �Nstep�107� on a single
atom for each value of �. Several tests on larger systems
confirmed that the same value holds for larger numbers of
atoms N. Since �corr is independent of �step only if �corr
�step, we performed these runs for the same step size as the
main calculations.

As in Fig. 2, we plot the population correlation factor �pop
from all our calculations as a function of the product
�dmc�corr and again find the exponential lower bound de-
scribed by Eq. �12�, as displayed in Fig. 3.

VIII. ANALYSIS OF VARIOUS SAMPLE SYSTEMS

The exponential law in Eq. �12� has severe implications
for the scaling of the DMC method. Following Eqs. �3� and
�5�, the total CPU cost becomes

FIG. 2. �Color online� Inefficiency factor �pop computed for a
model DMC process �see text� in dependence of the two relevant
parameters �dmc�corr and �ceref /�corr. The exponential law extrapo-
lated from the perturbative limit is found to give a strict lower limit
for �pop. Solid circles refer to standard DMC with branching. Hol-
low circles refer to minimal stochastic reconfiguration MC �SRMC,
Refs. 23 and 24�.

NORBERT NEMEC PHYSICAL REVIEW B 81, 035119 �2010�

035119-4



ttotal �
exp�X�N�

�Eatom
2 ,

or worse. So, even if population correlation may not be an
issue yet for most applications, it will eventually lead to an
exponential scaling of the cost. The factor X can be reduced
by optimizing the wave function, but the gain that is possible
with reasonable effort is very limited.

Table I lists a selection of sample systems showing the
size at which the exponential scaling becomes observable.
The integrated correlation time �corr 
via Eq. �4�� and the raw
variance �dmc

2 were computed for very small systems and Eq.
�12� was then used to estimate the size at which a compa-
rable system would show significant population correlation.
All values should be understood as rough estimates. The trial
wave functions were either taken from a library of examples
or optimized with moderate effort. Further optimizations
could certainly reduce �dmc

2 and thereby shift the onset of
significant population correlation. Typically, however, sig-
nificant effort is necessary even for minor improvements us-
ing optimizations beyond the standard Jastrow terms.

IX. ALTERNATIVE VARIANTS OF QMC

To this point the discussion was centered on the conven-
tional DMC algorithm including drift and branching. In the
following, we will briefly discuss a number of alternative
QMC algorithms in view of the population correlation scal-
ing.

First, it is clear that population correlation can only be
caused by some form or branching. The variational MC
�VMC� algorithm, which samples an explicitly known wave
function, clearly does not have this feature. A variant of
DMC with branching switched off �sometimes referred to as
“pure” DMC� also features a completely uncorrelated popu-
lation. If all configurations are fixed to the same statistical
weight, this process produces the same distribution of con-
figurations and thereby the same total energy as VMC and
can therefore be seen as a variant of the former.

If, on the other hand, each configuration in a pure DMC
run carries a statistical weight evolving with the fluctuations

in the local energy, the effective population size Npop
eff is re-

duced in the same way as it would be when branching were
allowed, with the only difference that decorrelation does not
happen and the method becomes exponentially unstable with
simulation time.24

A number of variants of the DMC algorithms keep the
population size fixed and include branching in form of sto-
chastic reconfiguration, duplicating some configurations and
deleting others.23,24,27 While the population is fixed, the total
weight is allowed to fluctuate independently and the popula-
tion control is replaced by a weight control mechanism.

Our definition of the population correlation factor �pop in
Eq. �10� is already kept general enough to capture the effects
of weight fluctuations within the population along the corre-
lations within the population and to capture the fluctuations
of the total weight along with the population fluctuations.
Tests on several variants of the branching strategy confirmed
that these have no influence on the exponential lower bound
of �pop but only affect how far the actually measured �pop

FIG. 3. �Color online� Data from many different calculations on
a model system of N independent hydrogen atoms with a detunable
trial wave function 
Eq. �13��. �dmc and �pop were directly obtained
from each run. �corr was determined from a single, very long run for
each type of atomic wave function. Population control is kept at the
default tceref=1.

TABLE I. Estimated values for various sample systems. The last
column gives the system size based on Eq. �12� at which the popu-
lation correlation becomes significant with �pop=2. Beyond this
size, the DMC method must be expected to become exponentially
inefficient. The first three categories are based on either all-electron
�ae� or pseudopotential �pp� wave functions with optimized Jastrow
factors. All numbers should be understood as rough estimates based
on moderately optimized trial wave functions. Reducing �dmc

2 by
further optimization will shift the onset of the inefficiency by the
same factor.

Atoms �ae� �corr �dmc
2 /atom �pop=2

He 0.5 0.0044 2700 atoms

C 0.4 0.16 140 atoms

Ar 0.04 8.0 250 atoms

Molecules �ae� �corr �dmc
2 /molec �pop=2

H2O 0.1 0.58 550 molecules

CH4 0.3 0.24 120 molecules

C2H4 0.4 0.51 38 molecules

SO2 0.06 7.5 105 molecules

Crystals �corr �dmc
2 /atom �pop=2

Diamond �pp� 0.15 0.23 630 atoms

Diamond �ae� 0.1 2.3 133 atoms

Graphite �pp� 0.3 0.20 135 atoms

Silicon �pp� 0.4 0.052 328 atoms

Electron gas �corr �dmc
2 /elec. �pop=2

3d crystal �rs=1� 0.2 0.26 193 electrons

3d fluid �rs=5� 5 4.2�10−4 330 electrons

3d fluid �rs=10� 16 5.1�10−5 242 electrons

2d crystal �rs=1� 0.4 0.038 570 electrons

2d fluid �rs=1� 0.3 0.033 1154 electrons
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exceeds the predicted exponential scaling �see Fig. 2�.
One remaining option to limit �pop is the use of strong

population control on a small population, accepting a signifi-
cant population bias. The extreme case of this strategy would
be a single walker with the weight renormalized after every
step, leading exactly to the VMC distribution. We can, there-
fore, tune between exponentially scaling statistical ineffi-
ciency and a population bias that ultimately leads to recov-
ering the VMC algorithm, which—as we know—does not
suffer from exponential scaling.

Variants of QMC such as path integral MC �PIMC�
�Ref. 28� or reptation Monte Carlo �RMC� �Ref. 29� are
somewhat related to DMC in the sense that they are based on
a drift-diffusion process in imaginary time. Unlike DMC,
however, these methods are based on a true Metropolis algo-
rithm without the need for branching. Population correlation
does not occur and the statistical weight fluctuations are not
a problem. Instead, an analysis of the statistical efficiency of
these methods would need to take into account the correla-
tion time and its scaling with system size.

X. CONCLUSIONS

To conclude, we have derived an expression for the scal-
ing behavior of DMC calculations when aiming at a fixed
statistical precision per particle. Using a linear scaling algo-
rithm for an individual time step, constant scaling of the total
computational cost for the energy per particle is possible in
principle, except for a factor �pop, which quantifies the cor-
relation within the population of walkers. The exact value of
�pop was derived in the perturbative limit, depending only on
the correlation time and the raw variance of the DMC pro-
cess. Based on numerical evidence, we demonstrated that an
exponential extrapolation of the perturbative law gives a
strict lower bound to the inefficiency factor �pop. From this,
it follows that the DMC algorithm generally scales at least
exponentially in the square root of the system size. The num-

bers for actual sample systems indicate that this exponential
scaling should not even be observable in most DMC based
studies done so far, leaving plenty of room to do interesting
research with the DMC method.

Alternative schemes for branching and population control
that have been suggested23,24,27 may certainly influence the
efficiency of the algorithm. The exponential lower bound of
the statistical inefficiency, however, may at best be shifted
over toward an exponentially scaling population control
bias.30

It must be stressed that this exponential scaling factor is
specific to the DMC method and does not occur in other
methods like VMC. It is not linked to the more fundamental
fermion sign problem31 and it is not limited to certain
observables.32

In fact, the exponential scaling may be a symptom of the
very nature of the DMC process. In general, Markov-chain
MC methods such as VMC exhibit excellent scaling behav-
ior. DMC however, is not based on a Markov process but
rather on the simulation of a time-dependent stochastic dif-
fusion process. As such, it must be expected to suffer from
the exponential accumulation of errors inherent in the simu-
lation of time evolution in nonintegrable systems. The popu-
lation control that is necessary to stabilize the process might
then necessarily lead to exponential scaling either in the bias
or the efficiency of the process. The only way to overcome
this problem might then be to resort to alternative QMC
methods like VMC, PIMC, or RMC that are based the sto-
chastic computation of a multidimensional integral in the
original spirit of Markov-chain MC methods.
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